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The problem of internal waves excited by a point source in a two-layer atmosphere is investigated in a linear formulation. The 
lower layer is bounded by a horizontal surface and, the upper layer is unbounded. It is assumed that the vertical displacements 
and velocities of the particles vary continuously at the layer boundaries, and that the Brunt-VBisalL frequency is constant in each 
layer but experiences discontinuities at the common boundary of the layers; the source is situated in the lower layer. The asymptotic 
behaviour of the perturbations in the lower layer at long times is investigated. The solution is found using integral transforms 
and is expressed in terms of double integrals of many-valued analytic functions. A transformation is proposed which enables the 
solution to be expressed as the sum of single integrals. The behaviour of these integrals at long times is found by the stationary- 
phase method. It is shown that a critical cone exists across which the asymptotic behaviour of the system undergoes a change. 
0 2003 Elsevier Science Ltd. All rights reserved. 

A similar problem has been considered in the past for the case in which the lower layer is unbounded 
[l]. The case of a three-layer atmosphere with only the middle layer bounded has been studied in [2]. 

1. STATEMENT OF THE PROBLEM AND THE INTEGRAL 
REPRESENTATION OF THE SOLUTION 

Consider an ideal atmosphere filling three-dimensional space and divided into two layers with constant 
but different Brunt-Vaisala (BV) frequencies. The unit of time is chosen in such a way that the BV 
frequency in the upper layer equals unity. The BV frequency in the lower layer is N < 1. We take the 
thickness of the lower layer as the unit of length. The origin of a Cartesian system of coordinates qz 
is chosen on the unperturbed interface of the layers, with the z axis pointing in the direction opposite 
to that of the gravity force; a source is situated at the point (0, 0, -c). The strength Q(t) of the source 
is acontinuously differentiable finite function with support in the interval [0, ?“j. It is assumed that Q(0) 
= Q(0) = 0. The vertical deviation of fluid particles from the equilibrium position is expressed in terms 
of the derivative with respect to z of a function w(x, y, z, t) which is the solution of the problem 

(Aw)~~ + N2A2w = gb(x)6(y)6(z + c), -l<z<O 
(1.1) 

(Aw),,+A2w = 0, O<Z<+= 

The function w and its first-order partial derivatives are bounded and vary continuously across the 
layer interface. The initial data are zero. The vertical displacements vanish at the lower boundary, 
consequently, ~~(-1) = 0 (the subscript z denotes differentiation with respect to z). 

Taking a Laplace transformation with respect to the variable t, with zero initial conditions, and a 
Hankel transformation with respect to r = dm, we will seek a solution of problem (1.1) in the 
form 
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R(p, t) = ~Q(r)rP” -“& 
0 

(1.3) 

Put 

For z > 0, the function C&Z) satisfies the equation 

cp zz-u2a(p)2q = 0, OCZC+- (1.5) 

Any solution of Eq. (1.5) that is bounded for z > 0, Ke a > 0, satisfies the equation qZ(z) i 
ua+> = 0. 

Since the function cp(z) is continuous at the point z = 0, it follows that in order to determine the 
function q(z) in the interval [-1, 01, we must solve the following boundary-value problem (construct 
Green’s function) 

cp,,(z) - u202q(z) = (ulp)S(z + c) 

cpz(0) + ua<p(O) = 0, qp,(-1) = 0 
(1.6) 

The Wronskian of the two solutions of Eq. (1.6) 

cpl(z> = ch(uw(z + l)), q2(z) = (och(ucuz) -ash(uoz))lw. (1.7) 

equals 

-4-l) = 4(P) 

r(p) = achuo + oshuo = (a + o)euw + (a - o~)e-‘~ 
(l-8) 

and the solution of boundary-value problem (1.6) has the form 

i 

(pI(z)(p2(-c), -1 22 s-c 
(P(U,P,Z,C) = --L- 

&J(P) q+(-c)qqz), -c 5 z 5 0 

Substituting this function into Eq. (1.2), we obtain the solution of problem (1.1). 
For z > 0, this solution may be expressed in the form 

w = u( r, 2, c, t) + u( r, z, 2 - c, t) (I.9 

+-Cf i- 
1 

v(r, 2, c, t) = - I I 16a3i o c_im 

w(ut P, z, c)Jo(ru)R(p, Wudp 

Jf(u, p, z, C) = (p~(p))-lf?u~m(‘-C)-a~~ 

(1.10) 

(1.11) 

where the function R(p, 1) is defined by (1.3) 
In what follows we shall confine ourselves to investigating the behaviour of the solution in the upper 

layer. 

2. REPRESENTATION OF THE SOLUTION AS 
A SUM OF SINGLE INTEGRALS 

The poles of the function w in formula (1.10) are the zeros of the function @) defined by (1.8). Note - 
that, by virtue of Eqs (1.4), o(p) and &) are even functions and z(p) = c(p). 
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Ifp is a zero of c(p), thenp and -p are also zeros of this function. There are no zeros anywhere but 
on the imaginary axis. In fact, let p lie in the fourth quadrant and suppose Rep > 0. Then l/p lies in 
the first quadrant and the points llp2 and 1 + lip2 lie in the upper half-plane; hence the point a(p) 
lies in the first quadrant. Similarly, the point co(p) lies the first quadrant. But 

a(P) - O(P) 5 1, 

MP> + NP) 
pq > 1 

andp cannot be a zero of c(p). Then neither canj? or-p be zeros of c(p), and so, if Rep f 0,p cannot 
be a zero of the function c(p). 

Letp = iq and 141 > 1. In that case 

a(iq) = q -l/q, P- - o( iq) = 0 - N2/q 
Qiq) = 2a(iq)cos(uo(iq)) + 2io(iq)sin(uo(iq)) 

and consequently [(iq) f 0 for real 9 with 1 q 1 > 1. 
Consider the inner integral in formula (1.2). Connect the points [-i, i] by a cut along the imaginary 

axis. The integrand is a regular function in the plane slit in this way. Let C be simple smooth contour 
around the cut, symmetrical about the real and imaginary axes. Then, by Cauchy’s theorem, formula 
(1.10) may be written in the form 

u(r, z, c, t) = 
1 

- II 167c3i,, 
V(% P, z, c)Jo(ru)R(p, t)dudp (2.1) 

Let Ci denote the intersection of the contour C with the ith quadrant. 
As the point p moves in the positive sense along the are Ci + CZ, the point -p moves in the positive 

sense along the arc C, + C4. The integral along the second arc may be reduced to an integral along 
the first by substitutingp = -pl. At complex-conjugate points the integrand takes complex-conjugate 
values. As a point describes the contour Ci in the positive sense, the conjugate point describes C, in 
the negative sense. Taking into consideration that the functions a(p) and o(p) are even, we obtain, 
after interchanging the order of integration in formula (2.1) 

, z, c)Ja(ru)shp(t - r)dpdudz (2.2) 

Noting that Reo > 0 on the contour Ci, let us transform the integrand. By (1.10) and (1.11) we have 

and hence, using the equality 
+- 

I e-U”Jo(ru)du = -- 
0 k-7 

we can write formula (2.2) in the form 

V nk = ImjQ(r)j pf,(p) shp(t - 2) dpdz, k = 1,2 
0 a,( 1 + A$CET3 

where 

a, = 0, p1 = a2 = iN, fiz = i 

f,(p) = (l-K)~(~+K)++‘), K = J(N2+p2)/(l+p2) 

R,(r, 2, p> = (p2/(1 + p2>>r2 + ((c + 2n)K + Z>2 

(2.3) 

(2.4) 
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Note that 

R,(r,z, iN) = z2-(Nrlb)2, b2 = 1 - N2 

We shall call 

K = ((r, z): bz = Nr) 42.3 

the critical cone. If (rt z) @ K and the pointp lies in some neighbourhood of the point iN, the integrand 
in formula (2.3) will be an analytical function of p. The contributions from the endpoint iN to the 
asymptotic behaviour of the functions 71,~ and 71,~ will cancel out when addition is performed. But if 
(Y, z) E K, the point p = iN becomes a critical point. The asymptotic behaviour in that case will be 
investigated in the next section. 

Taking the integral (2.3) with k = 1, we change the variable of integration by putting 

(N2+p2)/(l +p2) = Nsincp, O<cp<n/2 

and defining 

and we obtain 

where 

B, = J(c+ 2n)2+ (57, sina, = &, coso, = ‘2 

T n/2 

u Ill = Rei IQ(r) j Ai(c sincpsin(N(1 - T)A(cp))dp& 
no 0 

F,(q) = A;(cp)coscp(’ - Nsin@-’ 
(1 +Nsincp)n+2 

A:(q) = (zINB, + sin(cp C a,)) - 1/2 

We now transform formula (2.3) for k = 2. Making the replacement of variable 

J-i 1 + p = bcosq, +./m = ibsincp, O<(p<g 

we obtain 

V n? = 

where 

B(q) = hxz; = J-q 
Sn(r, 2, Cp> = (zcoscp + i(c i- 2n)sincp)2 - (1 - b2cos2tp)(r/b)2 

D,(q) = e.TiC2”+ ‘%os(p 

3. THE ASYMPTOTIC BEHAVIOUR OF THE FUNCTIONS 
vnl AND vn2 AS t -+ -I-W 

(2.7) 

(2.9) 

(2.10) 

We know from the general theory that, up to an arbitrary negative power of t, the main contribution 
to the asymptotic behaviour comes from the endpoints of the intervals of integration and the stationary 
points. Let us estimate the contributions of the endpoints. The endpoint cp = 0 in integrals (2.7) and 
(2.9) corresponds to the point p = N. As already remarked, these contributions cancel each other out 
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and do not have to be evaluated. It follows from formulae (2.8) that cp = 7c/2 is not a stationary point 
of the phase A(q) and that Fn(n/2) = 0. Consequently, the contribution of the point cp = rc/2 to the 
asymptotic behaviour of the integral unl decreases as t -+ +m no more slowly than te2. It follows from 
formulae (2.10) that cp = n/2 is a stationary point of the phase and that D,(7r/2) = 0. The contribution 
of the point cp = rc/2 to the asymptotic behaviour of the integral vfil increases as t + +m no more slowly 
than t-“2. 

Let us estimate the contribution to the expression vnl from the stationary point. It follows from formula 
(2.7) that the stationary point will lie in the interval [0, n/2] only if z(NB,) c 1. Setting 

sin j3, = zI(NB,) WI 

we deduce that the stationary point 

Y, = a,-& (3.2) 

will belong to the interval [0, n/2] only if bz < Nr. When this inequality holds, formula (2.7) becomes 

““F,(cp)sincpsin(N(t-r)A(cp)) 
J 

-----dqdz 
sin@, + sin(cp - a,)) (3.3) 

The main contribution from the stationary point cp = yn equals the contribution from the point 
u = 0 of the standard integral [3] 

(J&,)()= 
NF,,(?I,) siw,’ m I I Q(r) sin(N(t -z)(A(y,) + A’(Y,)u))~ = 

B,m o o Ji 

&,(y,) &sin% T Q(T) . 
= Bn~~no&~S1n I N(t-z)A(yn)-: 

(3.4) 

The functions F, andA are defined by formula (2.8),A’(y,) f 0, the number Pn is defmed by formula 
(3.1), a, by formula (2.6), and yfl by formula (3.2). 

Note that on the critical cone b.z = Nr we have conditions 

Y, = 0, A’(Y,) = 0 

The right-hand side of (3.4) vanishes and consequently cannot be the principal term of the asymptotic 
series. The fact is that on this cone cp = 0 is a stationary point for the integrals vnl and un2. Let us evaluate 
the contributions from the stationary point cp = 0 in that case. By formulae (2.Q the following conditions 
hold for bz = Nu + 0 and cp + 0: 

&- + sin(cp-a,) = (pcosa, +o(cp), 
n 

A(q) = 1 -$p2+o((p2) 

s, = 2iz(c + 2n)(p -I- o(cp) 

D,(q) = 1+0(l), B(q) = N+ 

(3.5) 

It follows from formulae (2.7) and (2.9) that in the case the main contribution of the point cp = 0 
equals the standard integrals [2] 

(n,& = G,&, k = 1,2 

G,, = 
NF,,(O) 

B,Jcoscl,’ 
G,, = Re (3.6) 

Ink = j Q(T) j-J ’ ( (pan N(t -7) 1 + (-I)‘$’ ( 2 )) dcpdz 
0 0 



72 A. M. Ter-Krikorov 

It follows from formulae (2.6), (2.8) and (3.5) that G,, = G,% Evaluating the inner integrals in 
formulae (3.6) we conclude that the following asymptotic formula holds on the critical cone 

Thus, the perturbations in the upper layer from the source in the lower layer alternate as t + 00. The 
asymptotic behaviour is not uniform relative to the space variables. Within the critical cone K = {(Y, z): 
bz = Nr}, the perturbations are of the order t-l”, and outside the critical cone they are of the order 
t -3’2. In the transition zone near the critical cone the perturbations are of the order t-3’4. 
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